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ABSTRACT
Fault-tolerance has become an essential concern for pro-
cessor designers due to increasing transient and permanent
fault rates. Executing instruction streams redundantly in
chip multi processors (CMP) provides high reliability since
it can detect both transient and permanent faults and silent
data corruptions. However, comparing the results of the
instruction streams, checkpointing the entire system and re-
covering from the detected errors present high performance
degradation in execution time. This paper presents FaulTM-
multi, transactional memory based fault detection and re-
covery scheme for multi threaded applications running on
transactional memory hardware in order to reduce these per-
formance degradations.

1. INTRODUCTION
Fault tolerance has become a first-class design constraint for
processor designers since it is foreseen that technology trends
will increase the transient and permanent fault rates in fu-
ture processors [3, 2]. Tolerating errors in processors’ core
logic presents more difficult challenges than errors in stor-
age devices which can be mitigated by error detection and
correction codes (ECC). Lockstepping [24, 18], a conven-
tional error detection scheme for processor cores, executes
the instruction streams in two synchronized and lockstepped
processors redundantly and checks if both produce identical
results. This scheme provides the highest reliability since
it can detect permanent faults and Silent Data Corruptions
(SDC) as well as transient faults. However, coupling cores
tightly becomes unfeasible as device scaling continues. Thus,
researchers have proposed several alternatives to lockstep-
ping [13, 22, 11, 19, 20, 25].

Besides error detection, error recovery is also an indis-
pensable aspect of fault tolerance. Global checkpointing is
a well-known error recovery scheme in which the detected
errors are recovered by rolling back all processors to an ear-
lier validated state [15, 21]. However, it is foreseen that
in future many-core processors, global checkpointing may
take even more time than the execution of applications [14].
Thus, providing recovery for parallel applications becomes
harder since an error in one processor may propagate to
the others easily through shared variables between threads.
Moreover, maintaining identical instruction streams to the
redundant executions, called the input replication problem,
is a challenge in these applications as well. Thus, there are
only a few reliability studies which conduct experiments on
multithreaded applications without using global checkpoint-

ing [19, 17].
Yalcin et al. propose FaulTM [25], an architectural error

detection and recovery proposal for sequential applications
leveraging Hardware Transactional Memory (HTM). It is
proved that FaulTM reduces the overhead of comparison
and synchronization which is required in order to detect di-
vergent execution. However, the design for multi-threaded
applications is not presented in FaulTM. In this study, we
present FaulTM-multi, a fault tolerance scheme for multi
threaded applications running on multi core architectures.
FaulTM-multi leverages HTM in order to reduce the com-
parison overhead and to avoid global checkpointing. We are
motivated by the fact that HTM will soon be implemented
in mainstream processors. Although the first processor uti-
lizing HTM, the Rock from SUN, was canceled; the 48-core
Vega2 chip from Azul systems uses HTM [8] to accelerate
Java is widely used. Recently, AMD detailed their Advanced
Synchronization Facility (ASF) HTM proposal for X86 [7],
and patents filed by IBM [6] indicate that HTM is likely
to be implemented in the 16-core PowerPC processor which
will be featured in IBM’s next generation BlueGene/Q su-
percomputer. FaulTM-multi utilizes HTM to provide reli-
ability for parallel applications (non-TM and TM) against
transient and permanent faults. It leverages the lightweight
checkpointing mechanism of TM that provides local check-
pointing for fault tolerance while it avoids error propagation
out of the core. Also, FaulTM-multi eliminates the require-
ment of separate input replication mechanism.

2. BACKGROUND FOR TM AND FAULTM
Transactional Memory (TM) is a promising technique

which aims to simplify parallel programming by executing
transactions atomically and in isolation. Atomicity means
that all the instructions in a transaction either commit as a
whole, or abort and roll back their changes. When a trans-
action commits, its tentative updates are made permanent.
Transactions record their tentative reads and writes in a
read-set and write-set respectively. All TM proposals imple-
ment three key mechanisms: data versioning, conflict detec-
tion and conflict resolution. Data versioning manages all the
writes inside transactions until the transactions successfully
commit or abort. Conflict detection tracks the addresses
of transactional reads and writes to identify concurrent ac-
cesses that violate consistency. Conflict resolution aborts
one or more transactions to resolve conflicts. In this study,
we use lazy conflict detection/resolution and lazy data ver-
sioning (lazy-lazy) HTM, meaning that conflict detection is
done only at the end of the transactions and the validated
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Figure 1: FaulTM-multi for Parallel Applications

version of the data is written (published) to the shared mem-
ory at the end of the transaction.

Two key HTM characteristics are notably suitable for
fault detection and recovery. First, HTM systems already
have well-defined comparison mechanisms of read-/write-
sets in order to detect if there is any conflict between trans-
actions. While comparison of addresses is sufficient for con-
flict detection, some systems also send data along with ad-
dresses. FaulTM adapts these already existing conflict de-
tection mechanisms for error detection. Second, HTM sys-
tems provide mechanisms to abort transactions in case of a
conflict, thus they discard or undo all the tentative memory
updates and restart the execution from the beginning of the
transaction. Thus, a transaction’s start can be viewed as a
locally checkpointed stable state. FaulTM uses the already
existing TM abort mechanism for error recovery.

In the FaulTM approach, it executes applications in two
redundant threads (i.e it creates a backup thread) and in
special-purpose reliable transactions (From now on, we will
call these special-purpose reliable transactions as rel-tx in
order to avoid any confusion with regular TM transactions).
The FaulTM approach classifies any mismatch between the
write-sets and register files of rel-tx pairs as a hardware error
(transient or permanent), and aborts both rel-txs which are
then restarted. In the case of a complete match, one of the
rel-txs commits the changes to the shared memory. Since
data in cache and memory structures are protected by ECC
which is generated during the execution of store instructions,
“reading/writting from/to memory”and“conflict resolution”
are not vulnerable to hardware faults in FaulTM.

In fault tolerant systems, only validated, fault-free data
can be communicated outside of the sphere which is called
output commit problem. Also, since input messages should
be replayed after recovery, input commit presents problem in
fault tolerance as well. In the first design of FaulTM [25], as
soon as any I/O instruction is detected in a rel-tx, operations
in rel-txs are validated and commited up to that point. Only
one thread executes the I/O operation. After returning from
the operating system new original and backup rel-txs are
started. However, in FaulTM-multi design, we adopt the
standard solution in which output values are delayed until
validation (end of rel-txs in our case), and input values are
logged to replay after recovery. Note that the size of the
rel-txs are small enough for output delay.

Figure 2: Solving Input Replication in FaulTM

3. NON-TM PARALLEL APPLICATIONS
There are two main challenges in redundantly executing
multithreaded applications which are (1) handling instruc-
tions dedicated to maintaining synchronization such as locks,
barriers or create/join threads and (2) maintaining identical
instruction streams of redundant threads.

In FaulTM, the system can not be aware of the instruc-
tions in rel-txs until it commits. However, the thread man-
agement (e.g. create/join thread), coherency (allocate/re-
lease lock) and synchronization (e.g. barriers) instructions
should be committed to the system to avoid deadlock. Also,
before the execution of these instructions, all the older in-
structions on the thread should be validated from the re-
liability point of view and committed. In FaulTM-multi
(Figure 1), when a rel-tx encounters one of these special in-
structions, it first validates and commits before executing
the instruction and starts a new rel-tx pair. After the ex-
ecution of the special instruction, FaulTM-multi starts the
commit process in order to make the system aware of the
instruction. This way, even if one of the rel-txs aborts due
to a detected error, it will not try to reacquire the lock that
it already held, which could have led to a deadlock. Note
that lock release operations do not force rel-tx to commit
since delaying lock release instructions until the end of rel-
tx does not present any forward progress issues. Also, lock
allocation/release is accomplished by only the original rel-tx
since the backup rel-tx does not write anything to the shared
memory. However, backup rel-tx is allowed to operate on the
data locked by its original pair.

The second challenge is maintaining identical instruction
streams. In particular, input incoherence can be a problem
which occurs when a value is changed by another thread in
the system between the time it is read by the first rel-tx and
it is re-read by the second rel-tx. In Figure 2, we demon-
strate how the conflict detection mechanism of TM solves
the input incoherence problem. In the example, one of the
rel-tx(2) reads the old version of A while the other reads the
new version written by rel-tx(1). rel-tx(2) detects an error
since the original and the backup rel-txs operate on differ-
ent values. Although error-detection is adequate to abort
and restart rel-tx potentially solving the input incoherency,
conflicts should also be detected after error detection to dis-
tinguish input incoherence, transient faults and permanent
faults. For instance, two consecutive input incoherences on
the same processor is considered as a permanent fault if
conflict detection is not done. Note that both the original
and the backup rel-txs should accomplish conflict detection
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Figure 3: Design for TM Applications

since the late reader can be either the original or the backup
rel-tx.

4. TM APPLICATIONS
Many researchers have developed applications using TM with
the purpose of benchmarking different implementations, and
studying whether or not TM is easy to use [9, 12]. We believe
that by the time the TM programming model is adopted by
programmers and HTM systems are implemented, there will
be many TM applications to be executed on HTMs. Pro-
viding reliability to TM applications on HTM by using the
conventional fault tolerance schemes is infeasible since they
require additional comparison and checkpointing over TM
itself. In this study, we provide error detection and recov-
ery for TM applications in lazy-lazy HTM by leveraging the
existing structures on the hardware (Figure 3). We leave
supporting reliability with other HTMs such as eager-lazy,
eager-eager or hybrid-policy [10] systems as future work.

When a thread encounters the instruction that starts a
transaction, FaulTM first validates/commits the rel-tx be-
fore it starts the transaction. Then transaction starts both
in the original and the backup processors and they are ex-
ecuted in rel-tx. Since transactions already write the pro-
duced values to their write-sets, rel-txs do not need to regis-
ter the write values again. rel-txs do not start the validation
until the transactions commit. If the TM transaction com-
mits, the reliability validation is carried out before the TM
transaction publishes its write-set to avoid any error prop-
agation out of the core. In case the TM transaction aborts
due to a conflict, rel-tx is also aborted to avoid any correct-
ness issues.

After both transactions reach the commit stage, their write-
sets and register files are compared before collision detection
in order to abort erroneous transactions before they cause
other transactions abort erroneously. If there is an irrevo-
cable operation in a transaction, TM marks this transaction
as such and the transaction does not abort. When an irrevo-
cable transaction is executed with rel-tx, rel-tx is validated
before the irrevocable operation. rel-tx creates a checkpoint
of the register file and the write-set in order to ensure that if
an error is detected at the end of the irrevocable transaction,
it can rollback after the irrevocable operation.

In TM systems, there can be nested transactions that be-
gin and end within the scope of surrounding transactions.
There are two types of nested transactions: closed and open.
In a closed-nested TM system using flattening, either all or

Figure 4: Total entries in write-sets normalized ac-
cording to the total number of store instructions.

none of the transactions in a nested region commit. In con-
trast, in an open nested TM, when an inner transaction
commits, its effects become visible for all threads in the sys-
tem. In FaulTM, validations of the close-nested transactions
are performed at the commit of outer most transaction while
the validations of an open-nested transactions are performed
when the nested transaction commits.

5. EVALUATION
We use the M5 full-system simulator [4] with an implementa-
tion of a Hardware Transactional Memory system that uses
lazy data versioning and lazy conflict detection [16]. We
extend this simulator with our FaulTM-multi implementa-
tion. We evaluate our approach with 4 original and 4 backup
threads using splash2 [23] and stamp [5] benchmark suites
which are the representative of non-TM parallel and TM
applications. We evaluate our technique in the context of
a CMP with 8 in-order Alpha 21264 cores [1] running at
1GHz with private L1D and L1I caches and a unified L2
cache. Each level-1 cache is 64KB with four-way set asso-
ciativity, 64B line size, and a two-cycle hit latency. The L2
cache is 2MB with eight-way set associativity, a line size of
64B, and 10 cycles of hit latency. All caches are write-back.
Main memory latency is 100 cycles. We use fault injection
to measure the reliability performance of FaulTM-multi for
both transient and permanent faults.

We compare our FaulTM-multi system against lockstep-
ping, a standard fault-tolerance method. In the lockstepping
approach, after every store instruction, two threads synchro-
nize and the results of the store are compared.

FaulTM reduces store value comparison overhead since it
compares the write-sets (instead of each store values) which
have fewer amount of entries than total number of store
instructions in transactions due to multiple stores to the
same addresses. In Figure 4 we present this reduction on
different write-set sizes (i.e. 16, 32 and 64 entries) which
should be determined during the design time of HTM. In
the figure, each bar represents the normalized value of the
total amount of entries in write-sets as compared to total
stores. It is obvious that when we increase the size of write-
sets, the ratio of compared data reduces.

We find that, in our benchmarks, the percentages of en-
tries in write-sets are smaller than the percentages of all
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(a) Transient Faults (b) Permanent Faults

Figure 6: Error Recovery Performance of FaulTM

Figure 5: The overhead of FaulTM vs lockstepping
in the execution time of the applications

stores (35% less on average among all benchmarks), because
some store instructions in transactions write to the same ad-
dresses multiple times. For instance, in raytrace, labyrinth
and barnes with WS 64, write-sets have around 90% less en-
tries than stores. Due to the temporal locality of the stores,
our FaulTM technique requires fewer comparisons compared
to lockstepping in order to check errors.

In Figure 5, we compare the performance overhead of
FaulTM with lockstepping including comparison and spin
overheads. We use 64 entries in the write-sets of FaulTM.
Note that, lockstepping compares only the store values (not
register file) that can not guarantee the error free execu-
tion since the last validation. Also, lockstepping requires
additional checkpointing mechanisms (we did not take into
account the checkpoint creation overhead of lockstepping).
Comparatively, FaulTM has a negligible transaction creation
overhead since it utilizes HTM. We find that, on average,
the performance degradation of our approach is %10, %2
for splash2 and stamp applications which is 56%, 75% less
than lockstepping. Register file comparison of FaulTM costs
only 1.7% overhead on the execution time on average (it is
included in FaulTM bar). Register value comparison of lock-
stepping would cause extremely high overhead (not included

Benchmark Size Benchmark Size

barnes 2548 cholesky 909
fft 149 fmm 1634
lu con 516 lu noncon 387
ocean cont 642 ocean noncont 623
radiosity 110 radix 705
raytrace 5801 waternspatial 458
waternsquare 421 bayes 152716
genome 567 intruder 591
kmeans hi 1886 kmeans low 1043
labyrinth 50314 ssca2 505
vacation hi 6545 vacation low 6520
yada 7668

Table 1: Average Number of Instructions in a rel-tx.

in the evaluations here ) due to the frequency of instructions
which updates the register file.

Figure 6 presents the reliability performance of FaulTM.
For parallel applications, the potential problem is shared
variables that might propagate errors to other cores. We
avoid this problem by performing the reliability verification
just before publishing the write-set to shared memory. Ac-
cording to our fault injection experiments with a 10M-cycle
tracking window, our FaulTM design provides 100% error
coverage for both transient and permanent faults. In the
figure, we present the rate of the faults which is detected in
the relevant mechanism. These mechanisms are detecting
1) a fatal trap exception in a rel-tx, 2) a mismatch between
write-sets of rel-txs, 3) a mismatch between register files of
rel-txs, 4) an error which cause a time-out in the watchdog
mechanism. Also, FaulTM avoids detecting benign faults
which is 20% of injected transient faults and 32% of injected
permanent faults. The error recovery overhead of FaulTM
comes from the re-execution of the instructions from the be-
ginning of the rel-tx. Table 1 shows the average number
of instructions in transactions which is very low (generally
less than 10K instructions) compared to system-wide check-
pointing mechanisms ( 10M instructions) such as ReVive [15]
or SafetyNet [21]. Note that, smaller checkpoint interval is
essential to support I/O operations [20].

6. CONCLUSIONS
In this study, we introduce FaulTM-multi, an error detec-
tion and recovery approach leveraging a lazy-lazy hardware
transactional memory (HTM) system for both transient and
permanent faults on parallel (non-TM and TM) applica-
tions. FaulTM-multi provides an efficient error recovery
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mechanism by utilizing the local checkpointing mechanism
of TM. Also, it reduces the comparison overhead signifi-
cantly by comparing the redundant execution streams at the
end of the transactions instead of after every store instruc-
tion while avoiding error propagation to the whole system
by utilizing the isolation property of transactions. Moreover,
it eliminates the requirement of a separate input replication
mechanism by utilizing the conflict detection scheme of TM.
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