
Speculating on top of an unmodified Java VM ∗

Ivo Anjo João Cachopo
ESW

INESC-ID Lisboa/Instituto Superior Técnico/Universidade Técnica de Lisboa
Rua Alves Redol 9, 1000-029 Lisboa, Portugal

{ivo.anjo,joao.cachopo}@ist.utl.pt

Abstract
As multicore processors become the default for computing
devices ranging from smartphones to cloud servers, many
researchers have proposed Thread-Level Speculation (TLS)
as a solution to the problem of extracting parallelism from
sequential algorithms.

On managed code environments, such as the Java Virtual
Machine, most TLS research is done on smaller, simpler,
research Virtual Machines, which are more amenable to the
multiple changes needed for speculative execution, but that
do not reflect the full range of optimizations and issues that
top tier VMs such as Oracle’s HotSpot present.

In this paper, we make the argument for doing TLS on top
of an unmodified JVM, and explore why such a system may
present performance surpassing current TLS proposals.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming—Parallel Program-
ming

General Terms Languages, Performance

Keywords Automatic parallelization, Thread-Level Specu-
lation, Software Transactional Memory

1. Introduction
With the ubiquitous availability of multicore processors, par-
allel programming has long ceased to be the domain of a
small group of expert programmers. If we want our appli-
cations to go faster, they need to be able to do their work
in parallel. This shift is a major challenge for the software
industry [19].

Because concurrent programming still presents a far
greater challenge than sequential programming, many re-
searchers have proposed automatic parallelization as a means
of simplifying the creation of parallel applications, by
extracting concurrency from sequential algorithms (see,
e.g. [4, 20], for some of the earlier approaches). Further-
more, even though new applications may take advantage of

∗ This work was supported by FCT (INESC-ID multiannual fund-
ing) through the PIDDAC Program funds and by the RuLAM project
(PTDC/EIA-EIA/108240/2008).

multicore architectures, a vast majority of existing code is
still sequential and it is not feasible to rewrite it within a
reasonable time frame.

More recent proposals of automatic parallelization sys-
tems [6, 14, 17, 22] attempt to go even further by doing
Thread-Level Speculation (TLS). The idea behind this ap-
proach is that the parallelization system can optimistically
try to run certain parts of the code in parallel even without
being sure that the outcome will be correct. At runtime, the
results from a speculative execution are propagated to the
global program state only after successful validation.

Managed code environments, such as the Java platform,
provide an excellent target for TLS approaches, because of
the comparable ease of analyzing and modifying the byte-
code of applications, and the availability of both quality tools
for concurrent programming and source code for many Java
VM implementations.

To obtain good performance, modern Java VMs use a va-
riety of techniques such as Just-In-Time compilation based
on profiling, parallel garbage collection, and fast locking [7].
These JVMs are the result of years of tweaks and optimiza-
tions, and as such are not easily approachable for TLS re-
search. As a result, most TLS proposals for Java are imple-
mented on smaller, simpler VMs, which do not benefit from
all of the aforementioned advantages.

In this paper, we make the argument for doing speculative
execution on top of an unmodified Java VM, instead of
trying to modify it. We claim that most, if not all, of the
features needed for speculation can be implemented on top
of the VM, with normal Java code (or any other language that
runs on the JVM). We also explore some of the places where
advancements in the JVM could provide better performance.

In the next section, we present some of the reasons why
we believe that doing speculation on top of the JVM is a bet-
ter approach for making use of the new multicore architec-
tures. Then, in Section 3, we discuss some of the challenges
in implementing a speculation system on an unmodified VM,
and how they might be solved, followed by the conclusions
of this short paper.

2011 Workshop on Wild and Sane Ideas in Speculation and Transactions 1

mailto:ivo.anjo@ist.utl.pt
mailto:joao.cachopo@ist.utl.pt
mailto:ivo.anjo@ist.utl.pt,joao.cachopo@ist.utl.pt


2. (Not) Diving Into The VM
By working on top of the JVM, instead of modifying it,
we can take advantage of all the concurrency features pro-
vided by the Java platform. The Java Memory Model [12]
defines how threads interact through memory, allowing cor-
rect multi-threaded applications to be built, even if they
avoid the use of locking. The java.util.concurrent pack-
age provides utility classes to deal with atomic memory op-
erations, and concurrent data structure implementations. The
Java fork/join framework [11], recently added to Java 7, im-
plements a lightweight framework for supporting concurrent
applications that solve tasks by recursively splitting them
into subtasks which can be worked on in parallel.

Production VMs also provide very advanced GC strate-
gies, such as HotSpot’s G1 Garbage Collector or Azul’s
pauseless GC algorithm [8]. Tuning and debugging such al-
gorithms is hard, so TLS implementations normally choose
VMs with simpler GC designs; working on top of the JVM
allows us to take advantage of them.

On the other hand, doing speculation on top of the JVM
tends to impose bigger overheads than other approaches.
Many TLS approaches, especially those relying on hardware
support, speculate the execution of tens of instructions; to
amortize the overheads, speculations on an unmodified VM
will need to be longer-running and be able to spawn other
speculative executions.

Allowing a speculation to spawn further speculative tasks
is important when using method-level speculation [16]. Be-
cause method-level speculation normally works by speculat-
ing the execution of an entire method, we might further par-
allelize the application if, inside a method, we speculatively
parallelize the execution of other methods it calls.

3. Challenges of implementing TLS on an
unmodified Java VM

Working within the confines of the Java platform provides a
lot of advantages for TLS, but also imposes restrictions. Fea-
tures that before were obtained via Virtual Machine modifi-
cation now have to rely on the normal APIs provided to every
Java application, and might have to be obtained via complex
transformations.

In this Section, we explore some of the challenges and
limitations of implementing the mechanisms needed for TLS
on top of unmodified JVMs. In addition, we describe current
research that may be used to solve them, and identify future
research avenues.

3.1 Transactification
Usually, during speculation, a speculative task needs to
change not only its thread-local state (such as local vari-
ables on the stack), but also state allocated on the heap. To
control the application of these changes to the program state,
we need a mechanism that transforms an application so that
it can behave transactionally, allowing the TLS system to

validate that changes done speculatively are equivalent to
the original sequential semantics of the application, and to
undo them when they are not.

The JVM has no such mechanisms, but Software Trans-
actional Memory (STM) research has provided fitting solu-
tions. The Deuce [10] Java STM framework does automatic
transactification of classes by replacing instructions to read-
/write fields and arrays with calls to the framework. It re-
lies on the sun.misc.Unsafe internal JVM API that pro-
vides very low overhead when writing to or reading from any
memory position. The API used by Deuce is not standard on
the Java platform, but most JVMs provide it. An alternative
would be to use reflection, which is a heavier mechanism,
but that could be used as fallback if compatibility with all
VMs is required.

The DSTM2 [9] STM framework allows the automatic
creation of transactional versions of objects based on sup-
plied interfaces. It separates transactification from the STM
implementation itself, allowing multiple synchronization
strategies to be used.

Another option is provided by JaSPEx [1], which replaces
class fields with JVSTM’s versioned boxes [5]. Accesses to
those fields are in turn modified to call the JVSTM API,
which maintains in each box a linked list representing the
history of the values of the field, thereby allowing older-
running transactions to access values after they have been
updated by newer-running ones.

Whereas Software Transactional Memory is a good start-
ing point for being able to validate and undo changes done
speculatively, further research on what features are impor-
tant for speculation and which restrictions can be made to
their usual model might provide fruitful: Consider that, for
instance, when most TLS systems spawn speculative tasks,
the commit order for the tasks is known in advance, and as
such the STM implementation might be optimized for such
a use case; and also that isolation between multiple specu-
lative tasks might be relaxed, allowing speculations which
will commit later access to uncommitted writes from ear-
lier speculations. In addition, concurrent models for nested
transactional memory [13] could also be leveraged to pro-
vide better support for nested speculations.

While blind transactification of an entire application is
a basic approach, on many workloads only a small part of
the application objects are accessed by multiple threads. As
such, an interesting research challenge is the identification
of which parts of an application need to be transactified, or
to devise a scheme to perform transactification dynamically,
only when needed.

3.2 Non-Transactional Operations
During speculative execution, it is common to find non-
transactional operations: operations that will result in state
changes outside the control of the STM or other transactional
support being used, and that cannot be undone after being
applied.

2011 Workshop on Wild and Sane Ideas in Speculation and Transactions 2



On the JVM, these can be identified by detecting that a
method call is invoking a native method. This detection
can be made statically before the application is run, or at
runtime [1].

Static identification consists of building a graph of possi-
ble method invocations, starting from the initial entry point
of an application, and identifying which methods may trig-
ger execution of native methods. Because this approach is
very conservative, a better way is runtime control of their
execution, which works by identifying all non-transactional
operations during bytecode analysis, and by inserting a call
to the speculation framework before such operations. The
framework can then decide if the operation may execute (or
take steps to ensure that it can) returning from that call if the
non-transactional operation may proceed, or, alternatively,
throwing an exception to prevent the non-transactional oper-
ation from proceeding and aborting the speculation.

If the base Java class libraries are not transactified, as de-
scribed in the previous section, they also have to be consid-
ered as non-transactional operations.

Some of these restrictions may be lifted by expanding the
transactional system, integrating facilities such as (limited)
transactional input/output. Others may need studies and bi-
nary code analysis to identify and separate between native
method calls that change hidden state and those that do not,
such as asking the current time and date from the operating
system.

3.3 Stack Manipulation
Depending on the speculative model being applied, the Java
stack may need to be saved, changed, and restored. For in-
stance, Pickett and Verbrugge implemented a scheme in their
SableSpMT [15] system — Stack buffering — where stack
frames from a parent thread are copied to child speculative
threads.

Accessing and manipulating the stack is very hard to do
in Java. The Apache Commons Javaflow project [3] imple-
ments continuations by rewriting application bytecode to du-
plicate the native Java stack into a parallel data structure
managed by the Javaflow library, and by adding additional
entry points to Java methods, allowing execution to be re-
sumed from the middle of a method.

In contrast with transactification, stack manipulation
seems to be better suited if implemented at the JVM level.
For the HotSpot VM, two such approaches have been
tried [18, 21]. Both result in much better performance than
Javaflow by working directly with the real stack of Java
threads, but development seems stalled for the moment.

With more and more dynamic languages that support con-
tinuations and coroutines being implemented on top of the
JVM, hopefully the Java platform will be extended with such
mechanisms. For JVMs that do not support it, the bytecode
alternative can be used as a fallback.

3.4 Threads & Scheduling
Nowadays, most Java VMs map each Java thread to a na-
tive operating system thread. This means that most of the
scheduling decisions are done by the OS scheduler. Older
JVMs used to also support “green-threads”: multiple user-
mode threads that are mapped to a single native thread. Al-
though they might not be useful to most Java applications,
having the option to use and manage green threads would
allow a speculation system to control which threads are run-
ning, allowing their execution to be suspended and resumed.

Mechanisms commonly used by multithreaded applica-
tions, such as the thread pools provided by the java.util.
concurrent.ExecutorService API, which maps tasks to be
executed into threads that execute them, or a fork/join frame-
work such as Doug Lea’s [11] are problematic for specula-
tion. If a speculative task needs to wait for some other spec-
ulation to finish its work, and in turn that speculation is wait-
ing for another, at some point, because the thread pool is lim-
ited and all the threads have assigned work, only one thread
will be doing useful work. This issue may be alleviated by
research on designing a thread pool that is better suited to
the different usage patterns of a TLS system.

An additional limitation that affects speculative systems
is infinite loops caused by inconsistent reads: a specula-
tive thread may read a value and start looping based on
some condition over this value, but the value was invalid
(it was read too soon, before another thread wrote the cor-
rect one) and so the loop will never end. Unfortunately, it
is not possible, in general, to stop such a thread, as the
java.lang.Thread API for thread control is very limited,
most of it being deprecated; on the upside, such threads
will have no impact on other, correct ones, and cannot bring
down the entire application.

4. Conclusion
In this paper we proposed that Thread-Level Speculation
systems be implemented on top of unmodified JVMs, instead
of through the use of especially-modified VMs. By doing
this, the TLS system will be able to take advantage of the
performance features provided by modern production VMs,
such as their advanced garbage collection mechanisms and
Just-in-Time optimizing compilers.

We described some of the challenges of implementing
TLS on top of the JVM, discussed some possible approaches
to tackle those challenges, and expanded on features that
could be added to the Java platform that would prove useful
for speculative execution. We believe that in places where
JVM extensions are needed, those extensions — while ben-
efiting speculative execution — are not specific to it, and that
they would be useful to many other Java/JVM applications.

In the future, we plan to continue our work on the Ru-
LAM project [2], which aims to deliver speculative paral-
lelization of legacy Java applications.

2011 Workshop on Wild and Sane Ideas in Speculation and Transactions 3



References
[1] Anjo, I.: JaSPEx: Speculative Parallelization on the Java Plat-

form. Master’s thesis, Instituto Superior Técnico (2009)

[2] Anjo, I., Cachopo, J.: RuLAM Project: Speculative Paral-
lelization for Java using Software Transactional Memory [Ex-
tended abstract]. In: 8th International Conference on Princi-
ples and Practice of Programming in Java (PPPJ 2010). Vi-
enna University of Technology (2010)

[3] Apache Software Foundation: Apache Commons Javaflow,
http://commons.apache.org/sandbox/javaflow/ (2009)

[4] Blume, B., Eigenmann, R., Faigin, K., Grout, J., Hoeflinger,
J., Padua, D., Petersen, P., Pottenger, B., Rauchwerger, L., Tu,
P., et al.: Polaris: The next generation in parallelizing compil-
ers. In: Proceedings of the Seventh Workshop on Languages
and Compilers for Parallel Computing. pp. 10–1. Springer-
Verlag, Berlin/Heidelberg (1994)

[5] Cachopo, J., Rito-Silva, A.: Versioned boxes as the basis
for memory transactions. Science of Computer Programming
63(2), 172–185, Elsevier (2006)

[6] Chen, M., Olukotun, K.: The Jrpm system for dynamically
parallelizing Java programs. In: Proceedings of the 30th an-
nual international symposium on Computer architecture. pp.
434–446. ACM New York, NY, USA (2003)

[7] Click, C.: A JVM Does That???, http://www.azulsystems.
com/resources/presentations/a_jvm_does_that (2010)

[8] Click, C., Tene, G., Wolf, M.: The pauseless gc algorithm.
In: Proceedings of the 1st ACM/USENIX international con-
ference on Virtual Execution Environments. pp. 46–56. ACM
(2005)

[9] Herlihy, M., Luchangco, V., Moir, M.: A flexible framework
for implementing software transactional memory. ACM SIG-
PLAN Notices 41(10), 253–262, ACM (2006)

[10] Korland, G., Shavit, N., Felber, P.: Noninvasive concurrency
with Java STM. Programmability Issues for Multi-Core Com-
puters (MULTIPROG’10) (2010)

[11] Lea, D.: A Java fork/join framework. In: Proceedings of the
ACM 2000 conference on Java Grande. pp. 36–43. ACM New
York, NY, USA (2000)

[12] Manson, J., Pugh, W., Adve, S.V.: The Java memory model.
In: POPL ’05: Proceedings of the 32nd ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages. pp. 378–391. ACM, New York, NY, USA (2005)

[13] Moss, J.E.B., Hosking, A.L.: Nested transactional mem-
ory: model and architecture sketches. Sci. Comput. Program.
63(2), 186–201, Elsevier North-Holland, Inc. (2006)

[14] Oancea, C., Mycroft, A., Harris, T.: A lightweight in-place
implementation for software thread-level speculation. In: Pro-
ceedings of the twenty-first annual symposium on Parallelism
in algorithms and architectures. pp. 223–232. ACM (2009)

[15] Pickett, C., Verbrugge, C.: Software thread level speculation
for the Java language and virtual machine environment. Lan-
guages and Compilers for Parallel Computing pp. 304–318,
Springer (2006)

[16] Pickett, C., Verbrugge, C., Kielstra, A.: Understanding
method level speculation. Tech. rep., Sable Research Group,

School of Computer Science, McGill University (2009)

[17] Spear, M., Kelsey, K., Bai, T., Dalessandro, L., Scott, M.,
Ding, C., Wu, P.: Fastpath speculative parallelization. Lan-
guages and Compilers for Parallel Computing pp. 338–352,
Springer (2010)

[18] Stadler, L., Würthinger, T., Wimmer, C.: Efficient coroutines
for the java platform. In: Proceedings of the 8th International
Conference on the Principles and Practice of Programming in
Java. pp. 20–28. ACM (2010)

[19] Sutter, H., Larus, J.: Software and the concurrency revolution.
Queue 3(7), 54–62, ACM (2005)

[20] Wilson, R.P., French, R.S., Wilson, C.S., Amarasinghe, S.P.,
Anderson, J.M., Tjiang, S.W.K., Liao, S.W., Tseng, C.W.,
Hall, M.W., Lam, M.S., Hennessy, J.L.: Suif: an infrastruc-
ture for research on parallelizing and optimizing compilers.
SIGPLAN Not. 29(12), 31–37, ACM, New York, NY, USA
(1994)

[21] Yamauchi, H.: Continuations in servers, http://wikis.sun.
com/display/mlvm/StackContinuations (2010)

[22] Yoo, R., Lee, H.: Helper Transactions: Enabling Thread-Level
Speculation via A Transactional Memory System. PESPMA
2008 p. 63 (2008)

2011 Workshop on Wild and Sane Ideas in Speculation and Transactions 4

http://commons.apache.org/sandbox/javaflow/
http://www.azulsystems.com/resources/presentations/a_jvm_does_that
http://www.azulsystems.com/resources/presentations/a_jvm_does_that
http://wikis.sun.com/display/mlvm/StackContinuations
http://wikis.sun.com/display/mlvm/StackContinuations

	Introduction
	(Not) Diving Into The VM
	Challenges of implementing TLS on an unmodified Java VM
	Transactification
	Non-Transactional Operations
	Stack Manipulation
	Threads & Scheduling

	Conclusion

