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ABSTRACT 
Performance growth of processors will depend on the amount of 
parallelism exposed by software; at the same time, many 
algorithms are inherently sequential: they have dependencies that 
prevent parallelism from being automatically exploited. In this 
paper we describe a new type of parallelism called probabilistic 
parallelism that can be unlocked in inherently sequential 
programs using speculative execution based on programmer-
provided semantic information. Our preliminary results show 
promising gains without the need of re-writing applications.  

1. INTRODUCTION 
The computing industry faces a bleak reality: while the transistor 
count keeps following Moore’s prediction, we do not have a 
reliable method for using these transistors to run software with 
limited parallelism any faster. Furthermore, clock frequency 
increases are disappearing as processor cores will have to be more 
power efficient [1, 2], thus magnifying the challenges of 
improving the performance of applications with limited 
parallelism. We are clearly in need of novel methods – and new 
types of parallelism – that can enable applications with limited 
amount of inherent parallelism to take advantage of a large 
number, yet individually simple cores.  

Thread-level speculation (TLS) [3, 4, 5] has been explored as a 
possible path for unlocking additional parallelism. Unfortunately, 
so far TLS has not been very successful because of the high 
percentage of squashes, leading to wasted power and limited 
gains. Consequently, the research community has started to 
exploit the usage of programmer-provided additional code 
annotations [6, 7, 8, 9, 12], with the aim of removing 
dependencies that do not matter for the correctness of the 
program. In addition, the concept of pre-execution [10, 11], was 
earlier applied on the architecture level primarily in order to hide 
memory access latencies and thus improve the execution speed of 
single threaded applications.  

We build on these concepts, but we apply the techniques at a 
higher abstraction level; our approach is based on the premise that 
high-level semantic hints from the programmer, coupled with new 
run-time speculative techniques can unlock new types of 
parallelism in applications with limited inherent parallelism. 
Consequently, the contribution of this paper is twofold. First, we 
introduce the concept of probabilistic parallelism: parallelism 
that cannot be guaranteed, but may be available with a certain 
level of certainty; in order to exploit it however, the execution 
system will need to deploy speculative execution on multiple 
paths. Second, we show how programmer provided hints can be 
used to identify probabilistic parallelism and exploit it using 
thread-level hints based on speculative execution.  

2. Probabilistic Parallelism 
To illustrate the concept of probabilistic parallelism, let’s start 
with the example of Huffman decompression [15]. Huffman 
compression relies on assigning shorter codes to more frequent 
symbols, building a binary tree called the code tree where leafs 
represent symbols from the data stream that is being compressed. 
Symbols with higher frequency are closer to the root, while those 
with lower frequency are deeper down and the code assigned to a 
symbol is defined by the path to the corresponding leaf from the 
root node. Decoding of Huffman-encoded streams is inherently 
sequential: there is no reliable way to detect where in the 
compressed stream the boundaries between symbols are.  

However, as the compression algorithm assigns shorter codes for 
more frequent symbols, it is possible to calculate, based on the 
code tree, the probability P of having a symbol boundary within N 
consecutive bits. Using this information, if we divide up the 
compressed bit stream into M chunks, then with probability P, 
there will be a code boundary within N bits distance from the 
beginning of each chunk (except the first chunk, of course). This 
is what we call probabilistic data parallelism: Huffman 
decompression can be performed in a data parallel manner, with 
the constraint that the boundaries of data chunks are only known 
as a spatial interval with an associated probability.  

Generalizing the example above, we define probabilistic 
parallelism as parallelism that may be available, depending on 
specific conditions. Probabilistic parallelism is characterized by 
associated uncertainty factors in terms of  

 probability: the probability that the parallelism will 
actually be achieved, within the frame of an  

 uncertainty range, defined as a set of alternative 
execution possibilities of which all have to be explored 
to reach the specified probability level. In the Huffman 
decoding case, the uncertainty range is defined by N, 
the number of consecutive bits with a probable symbol 
boundary. 

Beside probabilistic data parallelism, we define a second class: 
probabilistic pre-execution based parallelism. Let’s consider the 
case of gzip compressor, included in the SPEC CINT 2000 
benchmark [14]. The high-level pseudo-code of the compressor is 
the following:  

deflate () { 

    while (lookahead != 0) { 

//insert 3-char string into dictionary 

INSERT_STRING();   

match = longest_match(); 
if (match) { 
   reset_needed = ct_tally_match(match); 
   while (matchProcessed) INSERT_STRING(); 
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 else  
   reset_needed = ct_tally_match(currentSym); 
if (reset_needed) 
   FLUSH_BLOCK(); 
while (lookahead < MIN_LOOKAHEAD) 
   fill_window(); } } 

 

The functions INSERT_STRING and longest_match  can, from 
a program semantics point of view, be executed ahead of time – 
pre-executed – in  each iteration, and the result can be reused at 
the right moment. However, the second invocation of 
INSERT_STRING may not be needed at all; the probability of 
needing its result is dependent on the actual input data. It will be 
executed speculatively and in case its result is needed, the pre-
execution will lead to a speedup of the main program. We will 
call such  a pre-execution probabilistic pre-execution; the 
performance gain is due to the exploited pre-execution based 
parallelism.  

Probabilistic pre-execution based parallelism is characterized by 
the same parameters as probabilistic data parallelism: the 
probability of the parallelism being achieved and, optionally, an 
uncertainty range for the pre-executed code. In our example, the 
uncertainty range is implicit (the “if” condition) and disregarded: 
pre-execution will take place, but its result may never be used. In 
general, a set of potential alternative execution possibilities may 
be defined for the uncertainty range (e.g. possible values of a 
variable).  

The common characteristic for both types of probabilistic 
parallelism is that the probability of achieving true parallelism 
depends on the nature of the input data, rather than the algorithm 
alone. This is a subtle, yet important difference: traditionally, 
parallelism was extracted based on the nature of the algorithm 
alone; however, as exemplified above, the likelihood of 
materializing probabilistic parallelism will not be dependent on 
the algorithm alone, but also on the input data.  

It is also intuitively clear that exploiting probabilistic parallelism 
requires speculative execution, but on a coarser-grained, 
application level, rather than on the level of the instruction-level 
architecture. For example, in case of Huffman decoding, the 
natural way to exploit probabilistic data parallelism is to execute 
N speculative versions for each chunk and retain the result of the 
correct one (if it was among the alternatives – which should be 
the case with probability P). A detailed description of the 
concrete implementation for Huffman decompression can be 
found in [16].  

3. EXPRESSING PROBABILISTIC 
PARALLELISM 
Probabilistic parallelism can be implemented explicitly, with 
programmer-controlled management of speculation. However 
such an approach puts a significant burden on the shoulders of the 
programmer that may act as a serious show-stopper for practical 
purposes.  

As an alternative, we have developed a hints-based system 
[16].We use  the term semantic hints to denote indications which 
the programmer can use to guide the run-time system during the 
execution of the application. In practice, a hint is a #pragma like 
construct inserted into the source code of the application and 
converted into run-time system primitives during compilation. 
Such hints don’t require a change in the original code; ignoring 
them will result in sequential execution.  

For expressing probabilistic parallelism, we use two types of 
hints: application-level pre-execution hints and coarse-grained 
speculative execution hints for probabilistic data parallelism. 
These hints can be associated with functions, function calls, sets 
of instructions or individual instructions.  

3.1 Pre-Execution 
From the programmer’s perspective, the hint for pre-execution 
must contain the following information: 

 which parts of a program can be executed ahead of time 
and how to group these into one or several pre-
execution groups, expressing the extent to which 
semantic ordering must be preserved, and 

 the probability and optional uncertainty range 
associated with each pre-executed piece of code 

The probability associated with the hint is needed in this case to 
help the run-time system to prioritize pre-execution in case of 
execution resource constraints.  

Conceptually, a pre-execution hint should result in an execution 
flow, with the specific probability, where the program still 
appears to be executed sequentially, but the instructions ‘hinted’ 
for pre-execution require virtually zero time, under the condition 
that the result of the probabilistic pre-execution turns out to be the 
correct one.  

3.2 Coarse-Grained Speculation 
Coarse-grained speculation of parts of the application is a hint 
that can create probabilistic data parallelism in an application. For 
example, in the case of Huffman decoding, the hint the 
programmer introduces is that the application can be run in a data-
parallel fashion, but the parallelism is probabilistic: the 
boundaries of the data chunks are only known as an interval rather 
than a precise position (the uncertainty range), with a certain 
probability. The run-time system must speculate, executing 
several variants of the program as defined by the uncertainty 
range and then choose the winner of the execution. 

The coarse-grained speculation hint provided by the programmer 
must therefore include the following elements:  

 which part of the application exposes probabilistic 
parallelism, 

 what is the uncertainty range, and  

 how to choose / decide on the correct result of the 
speculation (which variant within the uncertainty range 
was the correct one, if any). 

4. RUN-TIME SYSTEM 
The run-time system to exploit probabilistic parallelism is 
described in reference [16]; in this section we only provide a brief 
overview of the key concepts.  

The basic primitive exposed in order to support probabilistic 
parallelism is that of an execution fiber, used for modeling both 
pre-execution and coarse-grained speculative execution. A fiber is 
an isolated thread of execution that executes certain functionality 
on private data and whose result can be used to help the execution 
of the main thread. A fiber may be speculative: it is executed in 
isolation and its result is made visible globally or not based on 
input from the programmer.  

Speculative fibers may form fiber groups. A fiber within a group 
must be executed for each member of the uncertainty range 



associated with probabilistic parallelism. At the end of the 
execution of all speculative fibers within a group, an election of 
the winner fiber will take place. The run-time system allows for 
exactly one or no fiber to be selected as a winner; if there is a 
winner fiber, the result of that fiber is the successful outcome of 
the speculative execution, otherwise the speculative execution is 
considered unsuccessful and the main thread will have to execute 
the correct version of the code on the correct input data.  

5. PRELIMINARY RESULTS 
We evaluated the applicability of probabilistic parallelism on a 
TilePro64 processor [13]. The maximum geometric mean speedup 
for gzip was up to 1.7-fold [16], which can further be improved 
through the exploitation of data parallelism; for Huffman coding, 
the mean speedup was 8-fold [16]. Except for one input data type 
in the gzip case, the speedup was obtained within the same or 
lower energy budget as for the sequential application. It’s also 
important to stress that the speedup did not required rewriting of 
the algorithms, other than the insertion of the hints to express 
probabilistic parallelism.  

6. CONCLUSIONS 
In this paper we introduce the concept of probabilistic parallelism, 
a new type of parallelism that we show can be used to extract 
parallelism from applications with limited inherent parallelism. 
We also show how probabilistic parallelism can be expressed 
through a simple set of hints and how a speculative execution 
based run-time system can take advantage of these hints in order 
to speed up the execution of applications.  

Our preliminary evaluation indicates that significant speedup can 
be obtained within the same or reduced power budget, largely due 
to the efficiency of speculation driven by hints provided by the 
programmer rather than extracted by the hardware.  
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