
Hints based Speculative Execution for Exploiting
Probabilistic Parallelism

András Vajda
Ericsson SW Research &

Chalmers University of Technology

andras.vajda@ericsson.com

Per Stenström
Chalmers University of Technology

per.stenstrom@chalmers.se

ABSTRACT
Performance growth of processors will depend on the amount of
parallelism exposed by software; at the same time, many
algorithms are inherently sequential: they have dependencies that
prevent parallelism from being automatically exploited. In this
paper we describe a new type of parallelism called probabilistic
parallelism that can be unlocked in inherently sequential
programs using speculative execution based on programmer-
provided semantic information. Our preliminary results show
promising gains without the need of re-writing applications.

1. INTRODUCTION
The computing industry faces a bleak reality: while the transistor
count keeps following Moore’s prediction, we do not have a
reliable method for using these transistors to run software with
limited parallelism any faster. Furthermore, clock frequency
increases are disappearing as processor cores will have to be more
power efficient [1, 2], thus magnifying the challenges of
improving the performance of applications with limited
parallelism. We are clearly in need of novel methods – and new
types of parallelism – that can enable applications with limited
amount of inherent parallelism to take advantage of a large
number, yet individually simple cores.

Thread-level speculation (TLS) [3, 4, 5] has been explored as a
possible path for unlocking additional parallelism. Unfortunately,
so far TLS has not been very successful because of the high
percentage of squashes, leading to wasted power and limited
gains. Consequently, the research community has started to
exploit the usage of programmer-provided additional code
annotations [6, 7, 8, 9, 12], with the aim of removing
dependencies that do not matter for the correctness of the
program. In addition, the concept of pre-execution [10, 11], was
earlier applied on the architecture level primarily in order to hide
memory access latencies and thus improve the execution speed of
single threaded applications.

We build on these concepts, but we apply the techniques at a
higher abstraction level; our approach is based on the premise that
high-level semantic hints from the programmer, coupled with new
run-time speculative techniques can unlock new types of
parallelism in applications with limited inherent parallelism.
Consequently, the contribution of this paper is twofold. First, we
introduce the concept of probabilistic parallelism: parallelism
that cannot be guaranteed, but may be available with a certain
level of certainty; in order to exploit it however, the execution
system will need to deploy speculative execution on multiple
paths. Second, we show how programmer provided hints can be
used to identify probabilistic parallelism and exploit it using
thread-level hints based on speculative execution.

2. Probabilistic Parallelism
To illustrate the concept of probabilistic parallelism, let’s start
with the example of Huffman decompression [15]. Huffman
compression relies on assigning shorter codes to more frequent
symbols, building a binary tree called the code tree where leafs
represent symbols from the data stream that is being compressed.
Symbols with higher frequency are closer to the root, while those
with lower frequency are deeper down and the code assigned to a
symbol is defined by the path to the corresponding leaf from the
root node. Decoding of Huffman-encoded streams is inherently
sequential: there is no reliable way to detect where in the
compressed stream the boundaries between symbols are.

However, as the compression algorithm assigns shorter codes for
more frequent symbols, it is possible to calculate, based on the
code tree, the probability P of having a symbol boundary within N
consecutive bits. Using this information, if we divide up the
compressed bit stream into M chunks, then with probability P,
there will be a code boundary within N bits distance from the
beginning of each chunk (except the first chunk, of course). This
is what we call probabilistic data parallelism: Huffman
decompression can be performed in a data parallel manner, with
the constraint that the boundaries of data chunks are only known
as a spatial interval with an associated probability.

Generalizing the example above, we define probabilistic
parallelism as parallelism that may be available, depending on
specific conditions. Probabilistic parallelism is characterized by
associated uncertainty factors in terms of

 probability: the probability that the parallelism will
actually be achieved, within the frame of an

 uncertainty range, defined as a set of alternative
execution possibilities of which all have to be explored
to reach the specified probability level. In the Huffman
decoding case, the uncertainty range is defined by N,
the number of consecutive bits with a probable symbol
boundary.

Beside probabilistic data parallelism, we define a second class:
probabilistic pre-execution based parallelism. Let’s consider the
case of gzip compressor, included in the SPEC CINT 2000
benchmark [14]. The high-level pseudo-code of the compressor is
the following:

deflate () {

 while (lookahead != 0) {

//insert 3-char string into dictionary

INSERT_STRING();

match = longest_match();
if (match) {
 reset_needed = ct_tally_match(match);
 while (matchProcessed) INSERT_STRING();

mailto:andras.vajda@ericsson.com
mailto:per.stenstrom@chalmers.se

 else
 reset_needed = ct_tally_match(currentSym);
if (reset_needed)
 FLUSH_BLOCK();
while (lookahead < MIN_LOOKAHEAD)
 fill_window(); } }

The functions INSERT_STRING and longest_match can, from
a program semantics point of view, be executed ahead of time –
pre-executed – in each iteration, and the result can be reused at
the right moment. However, the second invocation of
INSERT_STRING may not be needed at all; the probability of
needing its result is dependent on the actual input data. It will be
executed speculatively and in case its result is needed, the pre-
execution will lead to a speedup of the main program. We will
call such a pre-execution probabilistic pre-execution; the
performance gain is due to the exploited pre-execution based
parallelism.

Probabilistic pre-execution based parallelism is characterized by
the same parameters as probabilistic data parallelism: the
probability of the parallelism being achieved and, optionally, an
uncertainty range for the pre-executed code. In our example, the
uncertainty range is implicit (the “if” condition) and disregarded:
pre-execution will take place, but its result may never be used. In
general, a set of potential alternative execution possibilities may
be defined for the uncertainty range (e.g. possible values of a
variable).

The common characteristic for both types of probabilistic
parallelism is that the probability of achieving true parallelism
depends on the nature of the input data, rather than the algorithm
alone. This is a subtle, yet important difference: traditionally,
parallelism was extracted based on the nature of the algorithm
alone; however, as exemplified above, the likelihood of
materializing probabilistic parallelism will not be dependent on
the algorithm alone, but also on the input data.

It is also intuitively clear that exploiting probabilistic parallelism
requires speculative execution, but on a coarser-grained,
application level, rather than on the level of the instruction-level
architecture. For example, in case of Huffman decoding, the
natural way to exploit probabilistic data parallelism is to execute
N speculative versions for each chunk and retain the result of the
correct one (if it was among the alternatives – which should be
the case with probability P). A detailed description of the
concrete implementation for Huffman decompression can be
found in [16].

3. EXPRESSING PROBABILISTIC
PARALLELISM
Probabilistic parallelism can be implemented explicitly, with
programmer-controlled management of speculation. However
such an approach puts a significant burden on the shoulders of the
programmer that may act as a serious show-stopper for practical
purposes.

As an alternative, we have developed a hints-based system
[16].We use the term semantic hints to denote indications which
the programmer can use to guide the run-time system during the
execution of the application. In practice, a hint is a #pragma like
construct inserted into the source code of the application and
converted into run-time system primitives during compilation.
Such hints don’t require a change in the original code; ignoring
them will result in sequential execution.

For expressing probabilistic parallelism, we use two types of
hints: application-level pre-execution hints and coarse-grained
speculative execution hints for probabilistic data parallelism.
These hints can be associated with functions, function calls, sets
of instructions or individual instructions.

3.1 Pre-Execution
From the programmer’s perspective, the hint for pre-execution
must contain the following information:

 which parts of a program can be executed ahead of time
and how to group these into one or several pre-
execution groups, expressing the extent to which
semantic ordering must be preserved, and

 the probability and optional uncertainty range
associated with each pre-executed piece of code

The probability associated with the hint is needed in this case to
help the run-time system to prioritize pre-execution in case of
execution resource constraints.

Conceptually, a pre-execution hint should result in an execution
flow, with the specific probability, where the program still
appears to be executed sequentially, but the instructions ‘hinted’
for pre-execution require virtually zero time, under the condition
that the result of the probabilistic pre-execution turns out to be the
correct one.

3.2 Coarse-Grained Speculation
Coarse-grained speculation of parts of the application is a hint
that can create probabilistic data parallelism in an application. For
example, in the case of Huffman decoding, the hint the
programmer introduces is that the application can be run in a data-
parallel fashion, but the parallelism is probabilistic: the
boundaries of the data chunks are only known as an interval rather
than a precise position (the uncertainty range), with a certain
probability. The run-time system must speculate, executing
several variants of the program as defined by the uncertainty
range and then choose the winner of the execution.

The coarse-grained speculation hint provided by the programmer
must therefore include the following elements:

 which part of the application exposes probabilistic
parallelism,

 what is the uncertainty range, and

 how to choose / decide on the correct result of the
speculation (which variant within the uncertainty range
was the correct one, if any).

4. RUN-TIME SYSTEM
The run-time system to exploit probabilistic parallelism is
described in reference [16]; in this section we only provide a brief
overview of the key concepts.

The basic primitive exposed in order to support probabilistic
parallelism is that of an execution fiber, used for modeling both
pre-execution and coarse-grained speculative execution. A fiber is
an isolated thread of execution that executes certain functionality
on private data and whose result can be used to help the execution
of the main thread. A fiber may be speculative: it is executed in
isolation and its result is made visible globally or not based on
input from the programmer.

Speculative fibers may form fiber groups. A fiber within a group
must be executed for each member of the uncertainty range

associated with probabilistic parallelism. At the end of the
execution of all speculative fibers within a group, an election of
the winner fiber will take place. The run-time system allows for
exactly one or no fiber to be selected as a winner; if there is a
winner fiber, the result of that fiber is the successful outcome of
the speculative execution, otherwise the speculative execution is
considered unsuccessful and the main thread will have to execute
the correct version of the code on the correct input data.

5. PRELIMINARY RESULTS
We evaluated the applicability of probabilistic parallelism on a
TilePro64 processor [13]. The maximum geometric mean speedup
for gzip was up to 1.7-fold [16], which can further be improved
through the exploitation of data parallelism; for Huffman coding,
the mean speedup was 8-fold [16]. Except for one input data type
in the gzip case, the speedup was obtained within the same or
lower energy budget as for the sequential application. It’s also
important to stress that the speedup did not required rewriting of
the algorithms, other than the insertion of the hints to express
probabilistic parallelism.

6. CONCLUSIONS
In this paper we introduce the concept of probabilistic parallelism,
a new type of parallelism that we show can be used to extract
parallelism from applications with limited inherent parallelism.
We also show how probabilistic parallelism can be expressed
through a simple set of hints and how a speculative execution
based run-time system can take advantage of these hints in order
to speed up the execution of applications.

Our preliminary evaluation indicates that significant speedup can
be obtained within the same or reduced power budget, largely due
to the efficiency of speculation driven by hints provided by the
programmer rather than extracted by the hardware.

7. REFERENCES
[1] Azizi, O., Mahesri, A., Lee, B.C., Patel, J. and Horowitz, M.

Energy-Performance Tradeoffs in Processor Architecture and Circuit
Design: A Marginal Cost Analysis. Proceedings of the 37th
International Symposium on Computer Architecture, 2010

[2] Falsafi, B. Dark Silicon and Its Implications on Server Chip Design.
Available at http://parsa.epfl.ch/~falsafi/talks/MSR-2010.pdf
(checked July 2011)

[3] Hammond, L., Willey, M. and Olukotun, K. Data speculation support
for a chip multiprocessor. Proceedings. of the 8th International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 1998

[4] Ohsawa, T., Takagi, M., Kawahara, S. and Matsushita, S. Pinot:
Speculative multi-threading processor architecture exploiting
parallelism over a wide range of granularities. Proceedings of the

38th annual IEEE/ACM International Symposium on
Microarchitecture, 2005.

[5] Warg, F, Stenström, P. Improving speculative thread-level
parallelism through module run-length prediction. Proceedings of the
Int. Parallel and Distributed Processing Symposium, 2003.

[6] Prabhu, P., Ghosh, S., Zhang, Y., Johnson, N.P. and August, D.L.
Commutative Set: A Language Extension for Implicit Parallel
Programming. Proceedings of the 32nd ACM Conference on
Programming Language Design and Implementation, 2011.

[7] Bridges, M. J. The VELOCITY compiler: Extracting Efficient
Multicore Execution from Legacy Sequential Codes. PhD thesis,
2008.

[8] Kulkarni, M., Pingali, K., Walter B., Ramanarayanan, G., Bala, K.
and Chew, L. P. Optimistic Parallelism Requires Abstractions.
Proceedings of the 2007 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2007.

[9] Vandierendonck, H., Rul, S. and De Bosschere, K. The Paralax
Infrastructure: Automatic Parallelization with a Helping Hand.
Proceedings of the 19th International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2010.

[10] Dundas, J. and Mudge, T. Improving Data Cache Performance by
Pre-Executing Instructions under a Cache Miss. Proceedings of the
11th International Conference on Supercomputing, 1997.

[11] Mutlu, O., Stark, J., Wilkerson, C., Patt, Y.N. Runahead Execution:
An Alternative to Very Large Instruction Windows for Out-of-Order
Processors. Proceedings of the 9th Symposium on High Performance
Computer Architecture, 2003.

[12] Bridges, M.J., Vachharajani, N., Zhang, Y., Jablin, T. and August,
D.I. Revisiting the Sequential Programming Model for Multi-Core.
Proceedings of the 40th IEEE/ACM International Symposium on
Microarchitecture (MICRO-40), 2007.

[13] Tilera Corporation.TILEPro64 Processor. Available at
http://www.tilera.com/sites/default/files/productbriefs/TILEPro64_P
rocessor_PB019_v4.pdf (checked July 2011)

[14] Standard Performance Evaluation Corporation. 164.gzip SPEC
CPU2000 Benchmark Description File. Available at
http://www.spec.org/cpu2000/CINT2000/164.gzip/docs/164.gzip.htm
l (checked July 2011)

[15] Huffman, D., A method for the construction of minimum redundancy
codes. In Proc. IRE, vol. 40, 1952

[16] Vajda, A., Själander, M., Stenström, P. Parallel Execution of
Inherently Sequential Applications on Many-Core Processors using
Semantic Hints. Chalmers University of Technology Technical
report 2011:16, ISSN 1652-926X, 2011

http://parsa.epfl.ch/%7Efalsafi/talks/MSR-2010.pdf
http://www.tilera.com/sites/default/files/productbriefs/TILEPro64_Processor_PB019_v4.pdf
http://www.tilera.com/sites/default/files/productbriefs/TILEPro64_Processor_PB019_v4.pdf
http://www.spec.org/cpu2000/CINT2000/164.gzip/docs/164.gzip.html
http://www.spec.org/cpu2000/CINT2000/164.gzip/docs/164.gzip.html

	1. INTRODUCTION
	2. Probabilistic Parallelism
	3. EXPRESSING PROBABILISTIC PARALLELISM
	3.1 Pre-Execution
	3.2 Coarse-Grained Speculation

	4. RUN-TIME SYSTEM
	5. PRELIMINARY RESULTS
	6. CONCLUSIONS
	7. REFERENCES

